

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 MODEL QUESTION BANK (DESCRIPTIVE)

Subject with Code :NUMERICAL METHODS, PROBABILITY & STATISTICS (20HS0833)

Course & Branch: B.Tech-CE,AGE

Year & Sem:II-II

Regulation: R20

UNIT –I

NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS& INTERPOLATION

1	Find a positive root of the equation	$nx^3 - x - 1 = 0$ U	sing Bisect	ion method.	[L3][CO1]	[12M]
2	Find real root of the equation $3x$	$= e^x$ Using Bise	ction metho	od.	[L3][CO1]	[12M]
3	Find out the square root of 25 give	. [L3][CO1]	[12M]			
4	Find a real root of the equation x	. [L3][CO1]	[12M]			
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15.				[L3][CO1]	[12M]
6	Find a real root of the equation x s method.	$\sin x + \cos x = 01$	Using Newt	on – Raphson	[L3][CO1]	[12M]
7	Find out the root of the equation.	[L3][CO1]	[12M]			
8	Find the root of the equation xe^{x}	= 2 using Regula	a-falsi meth	od.	[L3][CO1]	[12M]
9	From the following table values of when $x=0.12$ and $x=0.28$.	[L5][CO1]	[12M]			
		150.205110.2027	0.25 0.2553	0.30 0.3093		
	a) Using Newton's forward inter	-				
		<u>.3</u> 1.5 69 1.25	1.7 1.89	1.9 2.61	[L3][CO1]	[6M]
10	Obtain the value of $f(x)$ 0.21 0. f(x) when $x=$					
	b)Use Newton's backward interpo f(30)=0.3027, f(35)=0.3386	[L3][CO1]	[6M]			

UNIT –II

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS& NUMERICAL INTEGRATION

1	Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y^1 = y^2 + x$ and $y(0) = 1$	[L1][CO2]	[12M]
2	Solve $y^1 = x + y$ given $y(1) = 0$, find $y(1.1), y(1.2), y(1.3)$ by Taylor's series method.	[L3][CO2]	[12M]
3	Using Taylor's series method, find an approximate value of $y at x = 0.2$ for the differential Equation $y^1 - 2y = 3e^x$, $y(0) = 0$ compare the numerical solution obtained with exact solution.	[L3][CO2]	[12M]
4	Evaluate by Taylor's series method, find an approximate value of $y \text{ at } x = 0.1 \text{ and } x = 0.2 \text{ for the } D.E y^{II} - x(y^I)^2 + y^2 = 0;$ $y(0) = 1, y^1(0) = 0.$	[L5][CO2]	[12M]
5	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO2]	[12M]
	a)Solve by Euler's method $y^1 = y^2 + x$ $y(0) = 1$ and find $y(0.1)$ and $y(0.2)$	[L3][CO2]	[6M]
6	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L3][CO2]	[6M]
7	Using R-K method of 4 th order, solve $\frac{dy}{dx} = x^2 - y$, y(0)=1. Find y(0.1) and y(0.2)	[L3][CO2]	[12M]
8	Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y, y(0) = 1.$	[L3][CO2]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO2]	[12M]
10	a) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L5][CO2]	[6M]
10	b) Compute $\int_0^{\pi/2} sinx dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value.	[L5][CO2]	[6M]

UNIT –III BASIC STATISTICS & BASIC PROBABILITY

	a) i) The weights of 6 competitors	in a game are	given below	x7					
	ii) Find the median of the following	[L3][CO3]	[6M]						
1	b) Find arithmetic mean to the follo								
-	Marks 10-20 20-	50-60	[L3][CO3]	[6M]					
	frequency 5 8	30 30-40 25		10					
	a) Find the median to the following								
	Class intervals 40-50	50-60 60-70) 70-80	80-90	[L3][CO3]	[6M]			
	frequency 5	12 23	8	2					
2	b) Find arithmetic mean to the follo	Find arithmetic mean to the following data							
		3 4	5		[L3][CO3]	[6M]			
		$\frac{3}{0}$ $\frac{4}{12}$	5 6						
	a) Find mode to the following data								
	X 0-5 5-10 10-15	15-20 20-	25 25-30	30-35 35-40	[L3][CO3]	[6M]			
	F 5 7 10	18 20		8 2					
3	b) Find the median to the following	data.							
	· · · · · · · · · · · · · · · · · · ·		7 20		[L3][CO3]	[6M]			
	x 5 8 11 f 2 8 12			23	r - 1r 1				
	a) Calculate the first four central mo	oments of the f	ollowing dis	stribution also find	[L3][CO3]				
	β_1 and β_2					[6M]			
	X 0 1 2 3 F 1 8 28 56		6 7 28 8	8					
4	b) The first four moments of a distri			f the variables are					
	2, 20, 40 and 50. Calculate mean		[L3][CO3]	[6M]					
	Calculate Karl Pearson and Bowley's	coefficient of	Skewness to	the following data	-				
5	X 0-10 10-20 20-30 30-40 4) 80-90 90-100	[L3][CO3]	[12M]					
	F 2 6 11 20	40 75	45 25	18 8					
	Calculate the first four central mom		owing data a	and also find					
6	Sheppard's correction, β_1 and β_2			50 (0) (0 70)		[1 3]			
6	Class intervals0-1010-20frequency28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) 40-50 20	50-60 60-70 15 3	[L3][CO3]	[12M]			
	a) Three students A,B,C are in runn								
	of winning and each is twice as 1	-	[L3][CO4]	[6M]					
_	or C wins.	-		_					
7	b) Determine (i) $P\begin{pmatrix}B\\A\end{pmatrix}$ (ii) $P\begin{pmatrix}A\\B\\B\end{pmatrix}$	vith							
	$P(A) = \frac{1}{3} P(B) = \frac{1}{4}, P(AU)$		[L3][CO4]	[6M]					
	a)In a certain town 40% have brown brown hair and brown eyes. A per		•						
8	i) If he has brown hair, what is the pr		[L3][CO4]	[6M]					
	ii) If he has brown eyes, determine th	•							
	brown hair?								

	b) The probability that students A, B, C, solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If all of them try to solve the problem, what is the probability that the problem is solved.	[L3][CO4]	[6M]
9	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$	[L3][CO4]	[12M]
10	 In a certain college 25% of boys and 10% of girls are studying mathematics. Thegirls Constitute 60% of the student body. (a) What is the probability thatmathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy? 	[L3][CO4]	[12M]

UNIT –IV RANDOM VARIABLES

]
1	Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, X (a, b) = max (a, b). Find the probability distribution. X is a random variable with $X(s)=\{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution	[L3][CO5]	[12M]
	A random variable X has the following probability function		
	X 0 1 2 3 4 5 6 7	[L3][CO5]	[12M]
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2	$\Gamma(X) = 0$ K $2K = 2K$ $5K = K = 2K = 7K + K$		
	Determine (i) K (ii) Mean iii) variance. (iv) if $P(X \le K) > 1/2$, find the Minimum value of K		
	a) Find the mean and variance of the uniform probability distribution		
	given by $f(x) = \frac{1}{n}$ for $x = 1, 2,, n$.	[L3][CO5]	[6M]
-			
3	b) A random variable x has the following probability distribution $\begin{bmatrix} -1 & -2 & -2 & -4 & -5 \\ -1 & -2 & -4 & -5 & -6 \end{bmatrix}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[L3][CO5]	[6M]
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	A random variable x has the following probability distribution function		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
4	P(x) k 0.1 k 0.2 2k 0.4 2k	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		
	A random variable x has the following probability distribution function		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[L3][CO5]	
5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[12M]
	Find i) k ii) $P(X \le 2)$ iii) $P(2 \le x \le 5)$.		
	$k(3r^2-1)$ in $-1 \le r \le 2$		
6	a) Probability density function $f(x) = \begin{cases} k(3x^2 - 1), in - 1 \le x \le 2\\ 0, elsewhere \end{cases}$.		
6		[L3][CO5]	[6M]
	(i)Find the value of k. (ii)Find the probability $(-1 \le x \le 0)$		
	b) If a random variable has a Probability density $f(x)$ as $f(x) = \begin{cases} 2e^{-2x}, \text{ for } x > 0\\ 0, \text{ for } x \le 0 \end{cases}$		
		[L3][CO5]	[6M]
	Find the Probabilities that will take on a value (i) Between 1 & 3 (ii) Greater than 0.5		
7	For the continuous probability function $f(x) = \begin{cases} kx^2e^{-x} & when \ x \ge 0\\ 0 & elsewhere \end{cases}$	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		
	A continuous random variable x has the probability density function is given by		
0	$f(x) = \begin{cases} Cx(2-x) & \text{if } 0 \le x \le 2\\ 0 & \text{: otherwise} \end{cases}$		[10] []
8	$f(x) = \begin{cases} 0 & : otherwise \end{cases}$	[L3][CO5]	[12M]
	Where C is a constant, Find C, Mean and Variance.		
	Suppose a continuous random variable X has the probability density function		
9	$f(x) = \begin{cases} k(1-x^2) \text{ when } 0 < x < 1\\ 0 \text{ ; elsewhere} \end{cases}$		[13]
9	$(\alpha) = (0)$: elsewhere	[L3][CO5]	[12M]
	Find i) k ii) Mean iii) Variance.		

	Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, \text{ for } 0 \le x \le \pi \\ 0, \text{ elsewhere} \end{cases}$	11 2110051	[10]	
10	Find the mean, mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$.	[L3][CO5]	[12]	

UNIT –V PROBABILITY DISTRIBUTIONS AND CORRELATION

	a) Derive mea	an and	varian	ice of B	inomia	l distrib	ution.				[L4][CO5]	[6M]
1	b) 20% of items produced from a factory are defective. Find the probability that in											
	a sample of 5 chosen at random (i) one is defective (ii) $P(1 < X < 4)$									[L3][CO5]	[6M]	
	Fit a Binomial distribution to the following frequency distribution:											
2	-	x	0	1	2	3	4	5			[L6][CO5]	[12M]
		f	2	14	20	34	22	8				
3	Out of 800 families with 5 children each, how many would you expect to have									et to have		[12]
3	(i) 3 boys (ii)	5 girls	(iii) e	either 2	or 3bo	ys iv) A	t leas	t one b	ooy		[L2][CO5]	[12M]
	a) If 2% of lig	ght bul	bs are	defecti	ve. Finc	d the pro	obabil	ity tha	ıt		[L3][CO5]	[6M]
	(i) At least or											
4	b) If for a Poi					P(X =	2) Fii	nd the	probabili	ty that	[L3][CO5]	[6M]
	i) $P(X \leq$	3) ii)	<i>P</i> (2 <	$X \leq 5$)							
	Fit a Poisson	distrib	ution t	the fo								
5	r	<i>x</i>	0	1	2	3	4	5	Total		[L5][CO5]	[12M]
-		f	142	156	69	27	5	1	400			
	In a sample o								standard		[L2][CO5]	
6	deviation is 2		-					al find				[12M]
	(i) How many students score between 12 and 15.(ii) How many students score above 18? (iii) How many students score below 18?											
	a) The probability of Poisson variate taking the values 1&2 are equal.											
_	Find i) Mean ii) $P(X \ge 1)$									[L3][CO5]	[6M]	
7	b) If X is a no	ormal v	variate	with m	ean 30	and star	ndard	deviat	ion 5.			
					$P(X \ge$						[L3][CO5]	[6M]
	Calculate Con	rrelatio	n coef	ficient	to the f	ollowin	g data	L				
	X	10	15	12	17 1	13 1	6	24	14 22	20	[L3][CO6]	[12M]
8	Y S	30	42	45 4	46 3	33 3	4	40	35 39	38	[][]]	r1
	Ten competit	ors in a	a musi	cal test	were ra	inked b	y the t	hree ju	udges A.I	B and C in the		
	following ord							5	<u> </u>			
	Ranks by A		1 6		10	3	2	4	9	7 8		
9	Ranks by I		3 5		4	7	10	2	1	<u>6</u> 9	[L2][CO6]	[12M]
	Ranks by C		6 4	-	8	 	$\frac{2}{\text{discus}}$	3	10	5 7		
	0				ficient method, discuss which pair of judges has mon likings in music.							
	Find two regr					-						
10									45	[L3][CO6]	[12M]	
	Y	56	64		3 5	58	73	75	82	77	1 -	-

Prepared by: Dept. of Mathematics